Large language models (LLMs) like GPTs are incredibly powerful, but working with their open-ended text outputs can be challenging. This is where the Instructor library shines - it allows you to easily map LLM outputs to structured data using Python type annotations.
Its a common misconception that LangChain's LangSmith is only compatible with LangChain's models. In reality, LangSmith is a unified DevOps platform for developing, collaborating, testing, deploying, and monitoring LLM applications. In this blog we will explore how LangSmith can be used to enhance the OpenAI client alongside instructor.
I just released a free course on wits and biases. It goes over the material from tutorial. Check it out at wandb.courses its free and open to everyone and just under an hour long!
Instructor makes working with language models easy, but they are still computationally expensive.
Today, we're diving into optimizing instructor code while maintaining the excellent DX offered by Pydantic models. We'll tackle the challenges of caching Pydantic models, typically incompatible with pickle, and explore solutions that use decorators like functools.cache. Then, we'll craft custom decorators with diskcache and redis to support persistent caching and distributed systems.
Latency is crucial, especially in eCommerce and newer chat applications like ChatGPT. Streaming is the solution that enables us to enhance the user experience without the need for faster response times.
Ensuring the accuracy of information is crucial. This blog post explores how Pydantic's powerful and flexible validators can enhance data accuracy through citation verification.
We'll start with using a simple substring check to verify citations. Then we'll use instructor itself to power an LLM to verify citations and align answers with the given citations. Finally, we'll explore how we can use these techniques to generate a dataset of accurate responses.
Today, I will introduce you to various approaches for using asyncio in Python. We will apply this to batch process data using instructor and learn how to use asyncio.gather and asyncio.as_completed for concurrent data processing. Additionally, we will explore how to limit the number of concurrent requests to a server using asyncio.Semaphore.
Discover how to distil an iterative method like Chain Of Density into a single finetuned model using Instructor
In this article, we'll guide you through implementing the original Chain of Density method using Instructor, then show how to distile a GPT 3.5 model to match GPT-4's iterative summarization capabilities. Using these methods were able to decrease latency by 20x, reduce costs by 50x and maintain entity density.
By the end you'll end up with a GPT 3.5 model, (fine-tuned using Instructor's great tooling), capable of producing summaries that rival the effectiveness of Chain of Density [Adams et al. (2023)]. As always, all code is readily available in our examples/chain-of-density folder in our repo for your reference.
What if your validation logic could learn and adapt like a human, but operate at the speed of software? This is the future of validation and it's already here.
Validation is the backbone of reliable software. But traditional methods are static, rule-based, and can't adapt to new challenges. This post looks at how to bring dynamic, machine learning-driven validation into your software stack using Python libraries like Pydantic and Instructor. We validate these outputs using a validation function which conforms to the structure seen below.
defvalidation_function(value):ifcondition(value):raiseValueError("Value is not valid")returnmutation(value)